报告人:美国华盛顿大学Michael G. Foster商学院 谭勇教授
演讲时间:2011-12-15(周四) 13:30-15:00
地点:博学楼1415
简历:谭勇,美国华盛顿大学Michael G. Foster商学院信息和运营管理教授,Evert McCabe学者。1983年进入中国科学技术大学近代物理系学习。1987年考取李政道教授CUSPEA项目赴美留学。在美国华盛顿大学先后获得物理学博士和商业管理博士。曾在英国斯特拉思克莱德(Strathclyde)大学从事博士后研究,并在法国科学院量子物理实验室作访问研究员。目前,主要从事电子商务,网络经济,社会网络,信息系统等方面的研究。
论文发表:分别在《管理科学》(Management Science),《信息系统研究》(Information Systems Research),《管理信息系统季刊》(Management Information Systems Quarterly),《运筹学》(Operations Research),《管理信息系统期刊》(Journal of Management Information Systems),《INFORMS计算期刊》(INFORMS Journal of Computing),《物理学评论》(Physical Review) ,《物理学评论快报》(Physical Review Letter),《物理学刊》(Journal of Physics), 《IEEE/ACM网络汇刊》(IEEE/ACM Transactions on Networking),《IEEE软件工程汇刊》(IEEE Transactions on Software Engineering),《IEEE知识和数据工程汇刊》(IEEE Transactions on Knowledge and Data Engineering),《IIE汇刊》(IIE Transactions)等国际顶尖期刊上发表论文。
学术任职:现担任《Management Science》(管理科学)副编辑(Associate Editor);2008至2010年担任《Information Systems Research》(信息系统研究)副编辑(Associate Editor)。是2010年运筹学和管理学研究协会(INFORMS)信息系统和技术分会(CIST)大会主席。
奖励荣誉:2007和 2010年华盛顿大学商学院杰出博士生导师奖;2006年华盛顿大学商学院(Dean’s Faculty Research Award)院长杰出研究奖;2005年华盛顿大学商学院(Dean’s Junior Faculty Research Award)院长杰出青年教师研究奖;2005年杰出本科教授奖;2003年Lex N. Gamble Family Award for Excellence in the Field of E-Commerce (电子商务成就奖)。指导和培养的博士生现在卡内基梅隆大学Tepper商学院等著名高校任教,和在微软等著名企业从事研究开发工作。
演讲题目:Do I Follow My Friends or the Crowd? Information Cascades in Online Movie Rating
演讲摘要:Online product ratings are widely available on the Internet and are known to influence prospective buyers. However, an interesting question of how reviews are generated has received very limited attention. Using integrated data from movie industry and an online social network site for movies, we find that users choose rating values based on a complex relationship between movie information, user characteristics, marketing effort, and social influences. We focus on the impact of social influences and find evidence of herding behavior wherein users’ ratings are influenced by ratings of prior reviewers. This finding raises questions about the reliability of ratings as unbiased indicators of quality. Interestingly, the effect of friends’ ratings is weaker than that of the crowd, and the presence of social networking reduces the likelihood of herding on prior ratings.